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One of the main research activities at the Institute
in the past years was the study of quantum critical-
ity in heavy fermion (HF) systems. Quantum phase
transitions, in contrast to their classical counter-
parts at T > 0 where thermal fluctuations are impor-
tant, are driven by a control parameter other than
temperature, e.g., chemical composition or pres-
sure. A quantum critical point (QCP) commonly
separates an ordered from a disordered phase at T =
0. The understanding of Non-Fermi liquid (NFL)
effects that occur close to the antiferromagnetic
(AF) QCP in HF systems is one of the major and
most controversially discussed problems in con-
densed matter physics.

Two different scenarios for the QCP, where long-
range AF order emerges from the HF state, have
been proposed: a spin density wave (SDW) and a
localized moment (LM) scenario. In the former sce-
nario [1,2], magnetic properties are associated with
the spin polarization of the Fermi surface and NFL
behavior results from the scattering of quasiparti-
cles (QP) off the quantum-critical spin fluctuations
in the magnetization. Three dimensional (3D) spin
fluctuations only couple strongly to QP along hot
lines around the Fermi surface separated by the
wave vector Q of the AF order. The remaining part
of the Fermi surface is largely unaffected by the
quantum critical fluctuations. Only in the case of
strong magnetic frustration the 3D system of AF
spin fluctuations (“spin fluid”) may be decoupled
into 2D spin fluids that render the entire Fermi sur-
face “hot” (2D SDW scenario) [3]. Very recent
inelastic neutron scattering experiments on
CeCu5.9Au0.1 revealed an anomalous energy over
temperature, E/T, scaling in the critical component
of the AF spin fluctuations that is almost momen-
tum independent, i.e. local in nature [4]. This has
led to the proposal that the LM scenario [5,6] in
which the internal structure of the composite fer-
mions is seriously taken into account, is more ade-
quate for HF metals than the (itinerant) SDW sce-
nario.

The tetragonal compound YbRh2Si2 [7] is ideally
suited to study quantum critical effects because (i)
it is located remarkably close to an AF QCP with a

tiny ordering temperature of TN = 70 mK (Fig. 1a)
and (ii) the effect of disorder is negligible in clean
single crystals with residual resistivities as low as
1 ãVcm (Fig. 1d) [8]. The application of pressure
to YbRh2Si2 [9] increases TN as expected, because
the ionic volume of the magnetic (4f 13) Yb3+-confi-
guration is smaller than that of the nonmagnetic
(4f 14) Yb2+ one. Expanding the crystal lattice by
randomly substituting Ge for the smaller isoelectric
Si atoms allows one to tune YbRh2(Si1–xGex)2

towards the QCP without affecting its electronic
properties and without introducing significant
disorder to the lattice [10]. A nominal Ge concen-
tration x = 0.05 (a microprobe analysis revealed an
actual concentration x # 0.02) was recently shown
to push TN down to 20 mK (Fig. 1a). The compari-
son of the TN vs pressure phase diagrams of the
undoped and the x = 0.05 single crystal (Fig. 1c)
proves that the main effect of Ge doping is indeed
the expansion of the lattice. The pressure shift of
{0.2 GPa [10] corresponds to a volume expansion
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Fig. 1: Electronic specific heat coefficient (a) and elec-
trical resistivity (b and c) of YbRh2(Si1–xGex)2 single
crystals with Ge-contents x = 0 (blue symbols) and
nominal x = 0.05 (red symbols). (d): Pressure depen-
dence of AF phase transition temperatures in
YbRh2(Si1–xGex)2 as deduced from electrical resistivity
measurements for x = 0 and x = 0.05. Data for the lat-
ter sample are shifted uniformly by Dp = {0.2 GPa.
Dotted line in (a) marks log(T0/T) with T0 = 24 K. The
arrow in (c) indicates TN.
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of 0.1% for the Ge-doped sample, consistent with a
true Ge content of 0.02 ± 0.004.

In undoped YbRh2Si2 the resistivity follows a
quasi-linear T-dependence down to about 80 mK,
below which a sharp decrease (independent of the
current direction) is observed (Fig. 1d): The resisti-
vity does not show any signatures of a SDW for-
mation for which an increase of r(T) along the
direction of the SDW modulation, indicating the
partial gapping of the Fermi surface, should be
expected slightly below TN . The absence of this
behavior favors the interpretation of local-moment
type of magnetic order in YbRh2Si2. The resistivity
in the AF ordered state (B = 0) is best described by
Dr = r – r0 = AT2 (r0: residual resistivity) with a
huge coefficient, A = 22 ãVcm/K2 for 20 mK # T
# 60 mK [8]. Extrapolating DC(T)/T as T→0 to g0

= 1.7 J/K2mol reveals an entropy gain at the AF
phase transition of only about 0.03 � Rln2. This is
in accordance with the very small value of about
2×10–3 ãB for the ordered moment found in ãSR
experiments [11] and provides evidence for the
weakness of the AF order in YbRh2Si2. The ratio of
A/g0

2 in the ordered state is close to that expected
for a Landau Fermi liquid (LFL) [12], i.e., one with
very heavy quasiparticle masses. Both YbRh2Si2

and YbRh2(Si1–xGex)2, x = 0.05 (nominal) show
very similar behavior at B = 0 in their correspon-
ding paramagnetic states. For 0.3 K # T # 10 K,
the specific heat coefficient and the electrical resis-
tivity follow Cel(T)/T ~ log(T0/T) with T0 * 24 K
[7] and Dr ~ T, respectively. These T-dependences

have been proposed to describe the asymptotic
(T→0) behavior in the 2D SDW scenario. Whereas
the resistivity continues to follow this linear T-
dependence down to below 20 mK, a pronounced
upturn occurs in Cel/T below 0.3 K whose origin
will be discussed at the end. In the same T-range
the uniform magnetic susceptibility is well descri-
bed by a Curie-Weiss law (Fig. 2a) implying a sur-
prisingly large effective moment ãeff * 1.4 ãB and
a Weiss temperature Q * {0.32 K [8]. Remarkably,
this paramagnetic moment exceeds the small orde-
red moment by more than two orders of magnitude
and is observed at temperatures two orders of mag-
nitude smaller than the Kondo temperature scale TK

= 30 K.
Since T-dependent measurements at the QCP

alone provide no information on how the heavy
QPs decay into the quantum critical state it is
necessary to tune the system away from the mag-
netic instability into the Landau Fermi liquid (LFL)
state and to follow the QP properties upon approa-
ching the QCP. We recently used the application of
magnetic fields for this purpose [8]. We first dis-
cuss the low-temperature magnetization which pro-
ves that the AF phase transition as a function of
field is a continuous one. YbRh2Si2 exhibits a high-
ly anisotropic magnetic response indicating that
Yb3+ moments are forming an “easy-plane” square
lattice perpendicular to the crystallographic c-
direction [7]. The isothermal magnetization (Fig.
2b) shows a strongly nonlinear response for fields
B⊥c. For T < TN a clear reduction in slope is obser-
ved above 0.06 T which indicates the suppression
of AF order resulting in a weakly polarized state.
The continuous polarization of the paramagnetic
moments for fields exceeding the critical field Bc0

= Bc(0) = 0.06 T gives rise to a strong curvature in
M(B). For B $ 10 T the Kondo interaction appears
to be completely suppressed and the moments are
almost fully aligned. The extremely low value of
the critical field for AF order highlights the near
degeneracy of two different heavy LFL states, one
being weakly antiferromagnetically ordered (B <
Bc0) and the other being weakly polarized (B > Bc0).
For fields applied along the magnetic hard direc-
tion, B||c, the magnetization shows an almost line-
ar behavior which was found to extend at least up
to 58 T [13]. At T < TN a very tiny increase in the
M(B) slope is observed below about 0.7 T which,
according to the resistivity measurements discussed
below, represents the critical field for B||c.
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Fig. 2: AC susceptibility of YbRh2(Si1–xGex)2 measured
along the basal plane as x–1 vs T (a). Isothermal DC
magnetization at varying temperatures for fields applied
along and perpendicular to the c-axis, respectively. The
arrows mark the critical fields Bc0 = 0.06 T and 0.7 T for
B⊥c and B||c, respectively.
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In Fig. 3 we show the evolution of the low-tem-
perature resistivity upon applying magnetic fields
along and perpendicular to the easy magnetic
plane. At small magnetic fields the Néel tempera-
ture, determined from the maximum value of
dr/dT, shifts to lower temperatures and vanishes at
a critical magnetic field Bc0 of 0.06 T, applied in
the easy magnetic plane, and of 0.66 T, applied
along the c-axis. At B = Bc0, the resistivity follows
a linear T-dependence down to the lowest accessi-
ble temperature of about 20 mK (red symbols in
Fig. 3). This observation provides striking evidence
for field-induced NFL behavior at the critical mag-
netic field applied along either crystallographic
direction [8]. At B > Bc0 we find LFL behavior Dr
= AT2 for T # T*(B) with the characteristic tempe-
rature T*(B) increasing and A(B) decreasing upon
raising the applied magnetic field. The evolution of
TN and T* as a function of B is shown in Fig. 4. As
illustrated in Fig. 5, NFL behavior dominates over
a wide region of the T-B phase diagram above TN

and T*(B) including the narrow border regime
down to lowest accessible temperature of 20 mK
between the two LFL states at B = Bc0. A very simi-
lar observation is made for the x = 0.05 sample
whose Bc0 value is shifted very close to zero.
We also investigated the electronic contribution to
the low-temperature specific heat at magnetic
fields applied along the c-axis. At the critical value
Bc0 a strong divergence is found in Cel/T vs. T [8].
At higher fields B > Bc0, Cel/T becomes almost tem-

perature independent at low temperatures, as
expected for a LFL, with a strongly field-depen-
dent coefficient g0(B). Furthermore, a weak maxi-
mum is observed at a characteristic temperature
T0(B) which grows linearly with the field indicating
that, upon the application of a field, entropy is
transferred from the low-temperature upturn to hig-
her temperatures. 
In Fig. 6 we present our analysis of the magnetic-
field dependence of the coefficients A, g0 and x0

observed for T→ 0 in the resistivity, Dr = A(B)T2,
specific heat, Cel/T = g0(B), and magnetic AC-sus-
ceptibility, x = x0(B), when approaching the QCP
upon reducing B towards Bc0 [8]. Since YbRh2Si2

behaves as a true LFL for B > Bc0 and T < T*(B) the
observed temperature dependences should hold
down to T = 0 and the coefficients g0 and A mea-
sure the effective quasiparticle (QP) mass and the
effective QP-QP scattering cross-section, respecti-
vely. A(B) roughly diverges as (B – Bc)

–1 indicating
that the whole Fermi surface undergoes singular
scattering at the QCP. Within the SDW scenario
this would require strictly 2D critical AF spinfluc-
tuations [14]. The same model, however, predicts a
logarithmic divergence of g0(B) for B→Bc0. In con-
trast, we observe a constant Kadowaki-Woods ratio
A/g0

2 for B > 0.5 T (see inset Fig. 6, [8]) indicating
a B–0.5 divergence of g0(B). Very recently, the g0(B)
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Fig. 4: T-B phase diagram for YbRh2Si2 with TN as deri-
ved from dr/dT vs T and T*, the upper limit of the Dr =
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Fig. 3: Low-temperature electrical resistivity of YbRh2Si2

at varying magnetic fields applied perpendicular (a)
and along the c-axis (b). For clarity the different curves
in B > 0 were shifted subsequently by 0.1 ãVcm. Up-
and down raising arrows indicate TN and upper limit of
T2 behavior, respectively. Dotted and solid lines repre-
sent Dr ~ T« with « = 1 and « = 2, respectively.
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dependence at the field-induced QCP has been stu-
died by careful measurements of the low-T heat
capacity of a single crystal of nominal Ge concen-
tration x = 0.05, with the magnetic field applied
within the easy plane [15]. For this configuration,
the critical field is 0.027 T only. Most importantly,

a power law divergence g0(B) ~ (B–Bc)
–0.33 is ob-

served upon reducing (B–Bc) from 1 T down to
0.02 T [15]. This provides clear evidence for a
stronger-than-logarithmic mass divergence at the
QCP incompatible with the SDW scenario. Further-
more, the observed field dependence in g0(B) pro-
ves that the zero-field “upturn” in Cel(T)/T below
0.3 K for YbRh2(Si0.95Ge0.05)2 (Fig. 1a) is intrinsic
and related to the QCP. The Curie-Weiss behavior,
observed in x(T) in the same T-range (Fig. 2a),
hints to large unscreened fluctuating Yb3+ moments
persisting all the way down to the QCP. This stron-
gly suggests a local nature of the critical fluctua-
tions.
The electrical resistivity in the paramagnetic state
does not show any cross-over but strictly follows a
linear T-dependence from T # 10 K down to the
lowest temperatures (Fig. 1b). This striking dispari-
ty at low T between the thermodynamic quantity
g0(T) = Cel(T)/T and the transport property Dr(T)
suggests that the dominating local f-component of
the composite fermions, probed by g0(T), is more
sensitive to the nearby AF order than its itinerant
counterpart probed by Dr(T). The observed dispa-
rity may thus be viewed as a direct manifestation of
a real break up of the composite fermion in the
approach to the QCP [15].
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